Nick Bristow PE, LEED AP BD+C, LEED AP O+M, CBCP
bristown@claycorp.com | 314.592.2211

U.S. Green Building Council – Missouri Gateway Chapter
www.usgbc-mogateway.org | 314.577.0854

Missouri Botanical Garden Commerce Bank Education Center

LEED: EXISTING BUILDINGS
OPERATIONS & MAINTENANCE

Transforming the Built Environment
INTRODUCTIONS

• Who are we?
 – Nick Bristow
 Senior Project Engineer, Forum Studio
 • LEED coordinator on numerous projects
 • WE Team- CBEC
Category Overview | Water Efficiency
Credit X Credit Investigation
Review

Missouri Botanical Garden Commerce Bank Education Center

WATER EFFICIENCY CLASS OVERVIEW

Transforming the Built Environment
WATER EFFICIENCY
CATEGORY OVERVIEW

- Prerequisites
- Credits
- Resources

Transforming the Built Environment
CATEGORY OVERVIEW

IS YOUR BUILDING QUALIFIED?

• Prerequisites
 • WEp1 Minimum Indoor Plumbing Fixture and Fitting Efficiency
IS YOUR BUILDING QUALIFIED?

• **Water Efficiency Credits (WEc)**
 - ✓ **WEc1** Water Performance Measurement
 - ✓ **WEc2** Additional Indoor Plumbing Fixture and Fitting Efficiency
 - ✓ **WEc3** Water Efficient Landscaping
 - ✓ **WEc4.1** Cooling Tower Water Management, Chemical Management
 - × **WEc4.2** Cooling Tower Water Management, Non-Potable Water Sources
• Resources
 Time
 Money
 Teamwork
 LEED

WATER EFFICIENCY CATEGORY OVERVIEW

Transforming the Built Environment
CATEGORY OVERVIEW

RESOURCES. WHAT DID IT REALLY TAKE?

• Time
 – Building Tours
 • Informal interviews with key building personal & Stakeholders, and building walk through
 • Review all drawings, reference guide, LEEDonline, etc.
 • Walk building again with stakeholders and new questions
 – Manual meter readings
RESOURCES. WHAT DID IT REALLY TAKE?

• Money
 – Building already has efficient plumbing fixtures
 – Sub-meter calibration
 – We were able to identify areas for potential improvement
CATEGORY OVERVIEW

RESOURCES. WHAT DID IT REALLY TAKE?

- The Water Efficiency Team
 Admo Ogun
 Rakesh Mora | Scott Schweiger | Nick Bristow

- Team meetings
- The Cloud via Dropbox
- Early Finish

Transforming the Built Environment
RESOURCES. WHAT DID IT REALLY TAKE?

• Key Players & Stakeholders
 – Horticulture Staff
 • Plant identification and planting history
 – Maintenance Staff
 • Tracking down pipes and meters
 • Taking weekly meter readings
Transforming the Built Environment

RESOURCES. WHAT DID IT REALLY TAKE?

• LEED Specific
 – Existing Documents
 • Monsanto Center LEED EB:O&M
 – LEED EB:O&M Reference Guide
 – LEEDUser.com
CATEGORY OVERVIEW

RESOURCES. WHAT DID IT REALLY TAKE?

• LEED Online
 – Log In…
 • Familiarize Yourself Ahead of Time
 • Figure Out THE GOAL
 – not always the same as understanding the goal
 • Work Backwards
 – Required Documentation?
 – Performance Period | YES/NO?
 • A specific timeframe allowed for measurement.
 – Who Signs off on the Documents?

Transforming the Built Environment
LEED ONLINE

Transforming the Built Environment
CREDITX CREDIT

HOW DID WE DO IT? WHAT DID WE DO?

• How did we do it?
 – Credit Analysis
 • Policy
 • Program
 • Plan
 – Scorecard

<table>
<thead>
<tr>
<th>MBG/CBEC LEED EBOM Certification</th>
<th>Points Attempted</th>
<th>Plan</th>
<th>Policy</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit</td>
<td></td>
<td>Y/N/C</td>
<td>Y/N/C</td>
<td>Y/N/C</td>
</tr>
<tr>
<td>3WE p1 Minimum Indoor Plumbing Fixture and Fitting Efficiency</td>
<td>-</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>3WE c1.0 Water Performance Measurement</td>
<td>2</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3WE c2.0 Additional Indoor Plumbing Fixture and Fitting Efficiency</td>
<td>5</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3WE c3.0 Water Efficient Landscaping</td>
<td>3</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3WE c4.1 Cooling Tower Water Management-Chemical Management</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3WE c4.2 Cooling Tower Water Management-Non-Potable Water Source Use</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Credit</td>
<td>Points Attempted</td>
<td>Plan</td>
<td>Policy</td>
<td>Program</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>3WE _p1</td>
<td>Minimum Indoor Plumbing Fixture and Fitting Efficiency</td>
<td>-</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>3WE c1.0</td>
<td>Water Performance Measurement</td>
<td>2</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3WE c2.0</td>
<td>Additional Indoor Plumbing Fixture and Fitting Efficiency</td>
<td>5</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3WE c3.0</td>
<td>Water Efficient Landscaping</td>
<td>3</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3WE c4.1</td>
<td>Cooling Tower Water Management-Chemical Management</td>
<td>1</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>3WE c4.2</td>
<td>Cooling Tower Water Management-Non-Potable Water Source Use</td>
<td>0</td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>
HOW DID WE DO IT? WHAT DID WE DO?

• How did we do it?
 – Volunteers
 – Teamwork
 • Monthly Meetings
 • A few offsite meetings
 • Plan Writing & Revising
 • Area Takeoff/Calculations

• MBG Monsanto Center Plans & Programs
How Did We Do It? What Did We Do?

- **WEp1 Minimum Indoor Plumbing Fixture and Fitting Efficiency**

- **Credit Intent & Requirements**
 - Reduce the burdens on water supply and wastewater systems.
 - Plumbing installed 1994 or later: baseline is 120% of reference codes.
 - Plumbing installed before 1994: baseline is 160% of reference codes.
 - Implement a policy requiring economic assessment of future plumbing renovations.
WEp1 Minimum Indoor Plumbing Fixture and Fitting Efficiency

<table>
<thead>
<tr>
<th>Fixture</th>
<th>UPC/IPC Standards</th>
<th>EPA WaterSense Standards</th>
<th>Currently Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Closet</td>
<td>1.6 GPF</td>
<td>1.28 GPF</td>
<td>1.6/0.8 Dual flush</td>
</tr>
<tr>
<td>Urinal</td>
<td>1.0 GPF</td>
<td>0.5 GPF</td>
<td>0 GPF</td>
</tr>
<tr>
<td>Public Lavatory Faucet</td>
<td>0.5 GPM</td>
<td></td>
<td>1.5 GPM</td>
</tr>
<tr>
<td>Private Lavatory Faucet</td>
<td>2.2 GPM</td>
<td>1.5 GPM</td>
<td>N/A</td>
</tr>
<tr>
<td>Kitchen/Janitorial Sink</td>
<td>2.2 GPM</td>
<td></td>
<td>2.2 GPM</td>
</tr>
<tr>
<td>Shower</td>
<td>2.5 GPM</td>
<td></td>
<td>2.5 GPM</td>
</tr>
</tbody>
</table>
HOW DID WE DO IT? WHAT DID WE DO?

- **WEP1** Minimum Indoor Plumbing Fixture and Fitting Efficiency
 - Assessment of Existing Fixtures
WEp1 Minimum Indoor Plumbing Fixture and Fitting Efficiency

• Policy Development

Transforming the Built Environment
<table>
<thead>
<tr>
<th>Select</th>
<th>Display</th>
<th>Fixture ID¹</th>
<th>Fixture Family</th>
<th>Fixture Type</th>
<th>Total Daily Uses 2</th>
<th>Baseline (GPF)</th>
<th>Installed (GPF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Level</td>
<td>Main Level UsWC-1,2</td>
<td>Water Closet</td>
<td>HET, Dual Flush</td>
<td>102</td>
<td>1.6</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Main Level</td>
<td>Main Level UsU-1</td>
<td>Urinal</td>
<td>Non-Water</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lower Level</td>
<td>Lower Level UWC-3</td>
<td>Water Closet</td>
<td>IPC/UPC (Conventional)</td>
<td>9</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

- **Total calculated flush fixture water use annual volume, baseline case (kGal):** 58.65
- **Total calculated flush fixture water use annual volume, performance case (kGal):** 34.2
- **Percent reduction of water use in flush fixtures (%):** 41.69
CREDITX CREDIT

Process Credits

<table>
<thead>
<tr>
<th>Fixture Groups</th>
<th>Flow Rate (GPM / GPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
</tr>
<tr>
<td>Main Level Main Level UsSH-1</td>
<td>2.5</td>
</tr>
<tr>
<td>Lower Level Lower Level USH-1</td>
<td>2.5</td>
</tr>
<tr>
<td>Main Level Main Level UsL-1</td>
<td>0.25</td>
</tr>
<tr>
<td>Lower Level Lower Level UL-1</td>
<td>0.25</td>
</tr>
<tr>
<td>Main Level Main Level UsS-1</td>
<td>2.2</td>
</tr>
<tr>
<td>Lower Level Lower Level US-1</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Select</th>
<th>Display</th>
<th>Fixture ID</th>
<th>Fixture Family</th>
<th>Fixture Type</th>
<th>Total Daily Uses</th>
<th>Duration (Secs)</th>
<th>Baseline</th>
<th>Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Level</td>
<td>Main Level UsSH-1</td>
<td>Shower</td>
<td>IPC/UPC (Convention)</td>
<td>4.9</td>
<td>300</td>
<td></td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Lower Level</td>
<td>Lower Level USH-1</td>
<td>Shower</td>
<td>IPC/UPC (Convention)</td>
<td>0.3</td>
<td>300</td>
<td></td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Main Level</td>
<td>Main Level UsL-1</td>
<td>Public Lavatory Faucet</td>
<td>Metering</td>
<td>167</td>
<td>N/A</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Lower Level</td>
<td>Lower Level UL-1</td>
<td>Public Lavatory Faucet</td>
<td>Metering</td>
<td>9</td>
<td>N/A</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Main Level</td>
<td>Main Level UsS-1</td>
<td>Kitchen Sink</td>
<td>IPC/UPC (Convention)</td>
<td>49</td>
<td>15</td>
<td></td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Lower Level</td>
<td>Lower Level US-1</td>
<td>Kitchen Sink</td>
<td>IPC/UPC (Convention)</td>
<td>3</td>
<td>15</td>
<td></td>
<td>2.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Total calculated flow fixture water use annual volume, baseline case (kGal) = 34.4

Total calculated flow fixture water use annual volume, performance case (kGal) = 34.4

Percent reduction of water use in flow fixtures (%) = 0
WEp1 Minimum Indoor Plumbing Fixture and Fitting Efficiency

Table WEp1-5. Flush & Flow Summary Statistics

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC/UPC baseline annual water use (kGal)</td>
<td>93.05</td>
</tr>
<tr>
<td>Number of fixtures substantially completed before 1993</td>
<td>0</td>
</tr>
<tr>
<td>Number of fixtures substantially completed in 1993 or later</td>
<td>42</td>
</tr>
<tr>
<td>LEED-EB: O&M baseline multiplier (%)</td>
<td>120</td>
</tr>
<tr>
<td>LEED-EB: O&M annual water use, baseline case (kGal)</td>
<td>111.66</td>
</tr>
<tr>
<td>Calculated annual water use, performance case (kGal)</td>
<td>68.6</td>
</tr>
<tr>
<td>Percent water use reduction in all fixtures (%)</td>
<td>38.56</td>
</tr>
</tbody>
</table>
HOW DID WE DO IT? WHAT DID WE DO?

WEp1 Minimum Indoor Plumbing Fixture and Fitting Efficiency

• Lessons Learned, Review, Comments:
 – Issues with lower level users with different fixtures
 – Metering faucet bonus
 – Showerheads identified as easy, effective upgrades
CREDIT

HOW DID WE DO IT? WHAT DID WE DO?

WEc2 Additional Indoor Plumbing Fixture and Fitting Efficiency {1-5 pts}

- Credit Intent & Requirements
 - Reduce the burdens on water supply and wastewater systems.

<table>
<thead>
<tr>
<th>Use less water than WEp1 baseline:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% = 1 point</td>
</tr>
<tr>
<td>15% = 2 points</td>
</tr>
<tr>
<td>20% = 3 points</td>
</tr>
<tr>
<td>25% = 4 points</td>
</tr>
<tr>
<td>30% = 5 points</td>
</tr>
<tr>
<td>35% = 1 EP point</td>
</tr>
</tbody>
</table>
CREDITX CREDIT

HOW DID WE DO IT? WHAT DID WE DO?

WEc2 Additional Indoor Plumbing Fixture and Fitting Efficiency {1-5 pts}

• No additional documentation required beyond prerequisite documentation
• Achieved 5 points + 1 EP point

Transforming the Built Environment
HOW DID WE DO IT? WHAT DID WE DO?

WEc1 Water Performance Measurement {1-2 pts}

- Credit Intent & Requirements
 - Measure water use over time to understand patterns and identify opportunities for water savings
 - Option 1: Whole Building Metering {1 pt}
 - Permanently installed water metering that measures the total potable water use for the entire building (utility water meter)
 - Record meter readings at least weekly and compile monthly and annual summaries

Transforming the Built Environment
HOW DID WE DO IT? WHAT DID WE DO?

WEc1 Water Performance Measurement {1-2 pts}

- **Credit Intent & Requirements**
 - OR Option 2: Sub-metering {2 pts}
 - Meet requirements of Option 1
 - Sub-metering for 1 or more of the following:
 - Irrigation
 - Indoor plumbing fixtures and fittings
 - Cooling Towers
 - Domestic hot water
 - Other process water
 - Calibrate owned sub-meters at manufacturer’s recommended interval

Transforming the Built Environment
WEc1 Water Performance Measurement

– Building Details
 • 1 Utility meter for whole building
 • 1 Sub-meter installed with renovation
 – Initial thought: irrigation submeter only
 • No automated readings for either meter
HOW DID WE DO IT? WHAT DID WE DO?

WEc1 Water Performance Measurement

• Tracking Down Sub-meter
• Measures irrigation, cooling tower, and boiler water use
• Deduction Method
HOW DID WE DO IT? WHAT DID WE DO?

WEc1 Water Performance Measurement

- Performance Period: (4 Months)
 - Performance Period minimum is 3 months
 - Measured readings weekly during the 4 month performance period (Feb 1 through May 31)
CREDIT X CREDIT

HOW DID WE DO IT? WHAT DID WE DO?

WEc1 Water Performance Measurement

• Lessons Learned, Review, Comments:
 – Tried to pursue option 2, but sub-meter included dishwashers and water fountains
 – Sub-meter was not due for calibration, but needed calibration
 – Sub-meter was not read regularly or at all before performance period
 – More water was used than expected during the spring/summer months
WEc3 Water Efficient Landscaping {1-5 pts}

– Credit Intent & Requirements
 • Limit use of potable water or other natural water resources for landscape irrigation

– Option 1: Compare metered data to LEED Baseline
 • Calculate LEED Baseline by determining how much water would be consumed by conventional irrigation methods in mid-summer
 • Meter potable water and determine percent reduction
 • Requires sub-metering and performance period
WEc3 Water Efficient Landscaping {1-5 pts}

– Option 2: Theoretical calculations to estimate consumption

 • Estimate mid-summer irrigation by assessing site area and vegetation types and using provided factors to quantify site characteristics.
 • Use Estimated and baseline case to determine percent reduction
 • Same as LEED BD&C
 • This option was pursued
HOW DID WE DO IT? WHAT DID WE DO?

WEc3 Water Efficient Landscaping {1-5 pts}

– Option 3: Perform Irrigation assessment with Independent tools
 • Use irrigation performance and ranking tools based on local, regional, state or national sources to demonstrate reduction
HOW DID WE DO IT? WHAT DID WE DO?

WEc3 Water Efficient Landscaping

Building Details
- Original Landscaping and Irrigation plans available
- Entrance areas replanted with native plants (not reflected on plans)
- Site tour with Horticulture staff to identify plants and changes made

Transforming the Built Environment
WEc3 Water Efficient Landscaping

– Area Takeoff and identification of microclimate zones
HOW DID WE DO IT? WHAT DID WE DO?

WEc3 Water Efficient Landscaping

• Summary of differences
 – Baseline
 • Species Factor: Average
 • Changed prairie grass and perimeter mixed areas to turf grass
 – Design Case:
 • Species Factor: Low
HOW DID WE DO IT? WHAT DID WE DO?

WEc3 Water Efficient Landscaping

Table. Irrigation Design Case (July)

<table>
<thead>
<tr>
<th>Landscape Type</th>
<th>Area (sf)</th>
<th>k_s</th>
<th>k_d</th>
<th>kmc₁</th>
<th>K_L</th>
<th>ET₀</th>
<th>ETₗ</th>
<th>Irrigation Type</th>
<th>IE</th>
<th>CE</th>
<th>TWA (Gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed (Perimeter)</td>
<td>13,545</td>
<td>0.2</td>
<td>1.1</td>
<td>1</td>
<td>0.22</td>
<td>0.19</td>
<td>0.0418</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>1</td>
<td>565</td>
</tr>
<tr>
<td>Mixed (Perimeter)</td>
<td>6,248</td>
<td>0.2</td>
<td>1.3</td>
<td>1.4</td>
<td>0.364</td>
<td>0.19</td>
<td>0.06916</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>1</td>
<td>431</td>
</tr>
<tr>
<td>Shrubs (Building Area)</td>
<td>2,354</td>
<td>0.2</td>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.19</td>
<td>0.019</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>Shrubs (Building Area)</td>
<td>3,449</td>
<td>0.2</td>
<td>1</td>
<td>1.3</td>
<td>0.26</td>
<td>0.19</td>
<td>0.0494</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>1</td>
<td>170</td>
</tr>
<tr>
<td>Ground Cover (Perimeter)</td>
<td>7,272</td>
<td>0.2</td>
<td>0.5</td>
<td>1</td>
<td>0.1</td>
<td>0.19</td>
<td>0.019</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>1</td>
<td>138</td>
</tr>
<tr>
<td>Mixed (Parking Lot)</td>
<td>4,286</td>
<td>0.2</td>
<td>1.3</td>
<td>1.4</td>
<td>0.364</td>
<td>0.19</td>
<td>0.06916</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>1</td>
<td>296</td>
</tr>
<tr>
<td>Total area</td>
<td>37,154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,645</td>
</tr>
</tbody>
</table>

Design total water applied (TWA) (gal) 1,645

Transforming the Built Environment
HOW DID WE DO IT? WHAT DID WE DO?

WEc3 Water Efficient Landscaping

Table. Irrigation Baseline Case (July)

<table>
<thead>
<tr>
<th>Landscape Type</th>
<th>Area (sf)</th>
<th>k_s</th>
<th>k_d</th>
<th>k_{mc}^1</th>
<th>K_L</th>
<th>E_{T0}</th>
<th>E_{T_L}</th>
<th>Irrigation Type</th>
<th>IE</th>
<th>TWA (Gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turf (Perimeter East)</td>
<td>13,545</td>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>0.7</td>
<td>0.19</td>
<td>0.133</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>1,756</td>
</tr>
<tr>
<td>Turf (Perimeter West)</td>
<td>6,248</td>
<td>0.7</td>
<td>1</td>
<td>1.4</td>
<td>0.98</td>
<td>0.19</td>
<td>0.186</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>1,184</td>
</tr>
<tr>
<td>Shrubs (Building Area)</td>
<td>2,354</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>0.25</td>
<td>0.19</td>
<td>0.0475</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>117</td>
</tr>
<tr>
<td>Shrubs (Building Area)</td>
<td>3,449</td>
<td>0.5</td>
<td>1</td>
<td>1.3</td>
<td>0.65</td>
<td>0.19</td>
<td>0.1235</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>413</td>
</tr>
<tr>
<td>Turf</td>
<td>7,272</td>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>0.7</td>
<td>0.19</td>
<td>0.133</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>943</td>
</tr>
<tr>
<td>Mixed (Parking Lot)</td>
<td>4,286</td>
<td>0.5</td>
<td>1</td>
<td>1.1</td>
<td>0.77</td>
<td>0.19</td>
<td>0.1463</td>
<td>Sprinkler</td>
<td>0.625</td>
<td>641</td>
</tr>
<tr>
<td>Total area</td>
<td>37,154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baseline Total Potable Water Applied (TPWA) (gal)</td>
<td></td>
<td>5,054</td>
</tr>
</tbody>
</table>
WEc3 Water Efficient Landscaping

• Lessons Learned, Review, Comments:
 – 67% Calculated Water Savings
 – Occupants were not aware of irrigation practices
 – Native plants do not require irrigation, could have achieved higher savings if some zones were cut and capped
 • Or could have shut off zones and compared against actual meter readings (Option 1)**
 – Coordinate with other teams on vegetated area
 – Room for improvement

Transforming the Built Environment
WEc4 Cooling Water Tower Management

– Credit Intent & Requirements
 • Reduce Potable water consumption for cooling tower
WEc4 Cooling Water Tower Management {1-2 pts}

• Option 1: Chemical Management {1pt}
 – Implement a water management plan addressing chemical treatment, bleed-off, biological control, and staff training
 – Install and maintain a conductivity meter and controls to automatically adjust bleed-off rates
WEc4 Cooling Water Tower Management {1-2 pts}

• (AND/OR) Option 2: Non-Potable Water Use {1pt}
 – Retrofit and/or maintain onsite cooling towers to use at least 50% non-potable water in makeup water
 – Install and/or maintain sub-meters to track potable and non-potable water for cooling tower makeup

• Why Not?
 – This option is rarely attempted due to the challenges associated with retrofitting an existing cooling tower to use non-potable water*
HOW DID WE DO IT? WHAT DID WE DO?

WEc4 Cooling Water Tower Management Details

- Plan was required
- Signatures required
- Everything else in place

Transforming the Built Environment
CLASS ACTIVITY!

Learning Activity
• Let’s see how easy it is to fill out a template and calculate water savings.

http://www.usgbc.org/sampleforms/Existing%20buildings/all/all
Hope Gribble, LEED Green Associate
 hope.gribble@mobot.org | 314.577.0225
Kurt Thompson, AIA, MBA, LEED AP BD+C
 kurthompson@gmail.com | 314.574.7290
Nick Bristow, PE, LEED AP BD+C, LEED AP O+M, CBCP
 bristown@claycorp.com | 314.592.2211

U.S. Green Building Council – Missouri Gateway Chapter
 www.usgbc-mogateway.org | 314.577.0854

Missouri Botanical Garden Commerce Bank Education Center
LEED: EXISTING BUILDINGS
OPERATIONS & MAINTENANCE
Transforming the Built Environment